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Letters to the Editor 

Bernstein wave instability in collisionless shocks 

Abstract. The growth rate for the instability of Bernstein waves in 
perpendicular collisionless shocks is calculated including pressure gradient 
effects. For typical experimental conditions the growth rate can be as much 
as an order of magnitude greater than that predicted by previous calculations. 

Recently a number of papers have been concerned with the instability of 
Doppler-shifted Bernstein waves in collisionless shocks propagating perpendicular 
to an applied magnetic field. Wong (1970) and Gary and Sanderson (1970) obtained 
an analytic expression for the growth rate of the instability for the case of cold ions. 
Lashmore-Davies ( 1970) pointed out that the instability arises because Bernstein 
waves can have negative energy in the presence of a drift current and he deduced that 
instability can occur for Ti 2 T,. Gary and Biskamp (1971) have given a more 
accurate expression for the growth rate in this case and discussed the significance of 
this instability for collisionless shock wave experiments. The  current (or equivalently 
the Doppler shift of the Bernstein modes) is caused by the drift of electrons in the 
plane of the shock and perpendicular to the magnetic field; the ions have a Larmor 
radius much greater than the shock thickness and therefore suffer no drift. The  
electron drift velocity is the resultant of the E x B drift (due to the voltage jump across 
the shock) and the pressure gradient drift; this letter reports the results of an extension 
of the theory to include the Vp, drift which has previously been ignored. 

We use the same geometry as in Gary and Sanderson (1970) so that in the rest 
frame of the shock the steady-state fields and electron pressure are given by 

E = -Eo$ B = Bo(1 +EX)$ P e  = Po(1 +Ax) 

where E,, E and A are positive quantities. Following Krall (1968) we take the zero- 
order electron distribution function as 

where ve2 = (T,/m,), Q, = (eBo/m,c), and vug = (cE,/B0)9 is the E x B drift velocity. 
Then from the usual definitions of pressure and temperature it follows that 
A 7 E'+ SS/Z and 6 = d(lg T,)/dx. 

The  drift eurrent is given by 
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so that the net drift velocity 

where u p  = (Ave2/R,) is the Vpe drift and 5, = ( ~ v , ~ / i a , )  is an average VB drift. 
Previous calculations have ignored vp and set v o  = U d .  In  strong shocks v o  and v, 
can be much greater than CD'd so the inclusion of pressure gradient effects is clearly 
desirable. 

We now consider a small perturbation f " )  of the steady-state distribution fe(0) 
giving rise to electrostatic waves with wave vector k perpendicular to B and parallel 
to od.  The linear dispersion relation is obtained in the usual way (Krall 1968), with 
the result 

where 
l+Ki+K,  = 0 (3) 

x = k2ve2/Re2 ke2 = (477-n0e2/Te) vi2 = (T1imJ. 
In  equation (5) ttT = (Sve2/R,) is the temperature gradient drift velocity, and I l ( x )  is 
the modified Bessel function of order 1. For simplicity we here omit terms in K ,  
arising from the magnetic field gradient ; this does not affect our results significantly. 

T o  investigate the instability of the Doppler-shifted Bernstein mode with 
w R  - kv, N - ZR, we keep just the resonant term of the infinite sum in equation (5) ; 
then equation ( 3 )  becomes for x B 1 

- k ( U d  + # U T )  

ke2TeZ,(  2k2 T,  - kv,2/2 + -  ",..z ( 1- ( w - kvo + ZL2e)(2~~)1'2 ) = o .  (6) 

Following Lashmore-Davies (1970) we look for a solution with w = kvi1/2 and find 

0.3 68 T,( vd + #aT  - v,2/2) 
(7) -~ - Y 

Re 
-- - 

Tive2/2(( 1 + k 2 / k e 2  - 0.075 T, /Ti )2  + 0.425 ( T , / T J 2 }  

where we have written the result in a form comparable with the expression given by 
Gary and Biskamp (1971). Thus inclusion of the pressure gradient increases y by a 
factor 

(In equation (6) of Gary and Biskamp (1971) v o  vd since vp = 0). The  magnitude 
of R varies through the shock since zid CC B/n is approximately constant, while 
vT CC T, /B increases since the electron temperature changes by a larger factor than 
the magnetic field. If the ions are also heated by the shock then the variation of R is 
correspondingly greater. As Gary and Biskamp (1971) have argued, Bernstein wave 
instability is the most likely explanation of the enhanced fluctuations observed in the 
Garching shock (Keilhacker et al. 1969). For the parameters of this shock we find 
R varies from about 3 at the front of the shock to about 15 at the rear, 
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We have also considered the case of oblique wave propagation, k.B # 0, where, 
as Gary (1970) has shown, the instability is ion acoustic. We find a similar result to 
equation (8) 

but w R  is here given by the ion acoustic frequency (Sanderson and Priest 1971). 
These results confirm the prediction of Woods (1969) that in strong shocks the large 
temperature gradient should play a dominant role. A fuller account of this work 
including a discussion of the VB terms will be given in a subsequent paper. 

We should like to thank Professor L. C. Woods and Drs R. A. Cairns, S. P. Gary, 
M. Keilhacker, C. N. Lashmore-Davies and J. W. M. Paul for helpful comments and 
discussions. 
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Decay instability at the ion-sound frequency induced by a 
large amplitude Bernstein mode in a plasma 

Abstract. Experimental results are presented which show that a large- 
amplitude wave of one of the Bernstein modes, above a certain threshold power, 
can decay into another Bernstein mode plus a low frequency ion-sound wave. 
At larger incident amplitudes, a whole spectrum of low-frequency ion waves 
was observed, with frequencies extending up to the ion plasma frequency. 
These results are compared with a previous theory and reasonable agreement 
is achieved. 

Recently, the parametric excitation of various plasma waves has been of consider- 
able interest both theoretically (Dubois and Goldman 1965, Silin 1965, Jackson 1967, 
Tzoar 1969, Pomeau 1967) and experimentally (Stern and Tzoar 1966, Hiroe and 
Ikegami 1967, Stern 1969, Porkolab and Chang 1969, Wong et al. 1970). I n  particular, 
the nonlinear coupling of high-frequency electric fields to low-frequency density 


